Troubleshooting table 3. Total time used: 9h 48m (24.5%)
When comparing against table 3 on this page, the results are from Johnson et al. (2021)
09.28-09.38, 10.10-10.19: Running 5 years
Copied and modified Case_Detection_Results_5yrs.Rmd as I had for Case_Detection_Results.Rmd yesterday, and then ran that on the remote machine (8.6 minutes).
I’ve noted that the CEplot-1.png goes into a files/figure-gfm folder. I’ve add some code to change the default save location of images, moved the current images, and altered the section names.
Reflection
Duplication between the two .Rmd files - would be easier if both controlled by a single script that could make the two outputs, else when making changes like this, have to carefully make to both files.
10.20-11.30: Resuming Table 3
Add the 5 year results to Table 3 - still assuming that S0 is S1NoCD from 3 year (not from from 5 year or S2 or S3), as can’t spot an S0 anywhere.
Due to size of table, it was difficult to just look between the two tables, so I converted and simplified Table 3 from the paper into a .csv file, and then appended that so I could calculate the differences.
Although some things are similar (e.g. scenario 1 costs and QALYs), others are very different…
import pandas as pdpd.set_option('display.max_columns', None)pd.set_option('display.max_rows', None)pd.read_csv('sall_compare_to_paper.csv')
Curious is this is due to the number of base agents, I re-ran with 1e6 base_agents (1 million) instead of 5e5 (500,000). On the remote machine, this took 17.1 + 17.1 = 34.2 minutes.
pd.read_csv('sall_compare_to_paper_1e6.csv')
Scenario
Interval
CostpAgent
CostpAgent_paper
CostDiff
CostPerc
QALYpAgent
QALYpAgent_paper
QALYDiff
QALYPerc
ICER
ICER_paper
ICERDiff
ICERPerc
IncrementalNMB
IncrementalNMB_paper
INMBDiff
INMBPerc
Ranking
Ranking_paper
RankDiff
RankPerc
0
S0
NaN
2154
2151
3
0.1%
12.538
12.546
-0.008
-0.10%
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
1
S1a
3 years
2430
2438
-8
-0.3%
12.558
12.560
-0.002
0.00%
13791.0
19632.0
-5841.0
-29.8%
726.0
444.0
282.0
63.5%
4.0
1.0
3.0
300.0%
2
S1a
5 years
2355
2356
-1
0.0%
12.560
12.556
0.004
0.00%
9740.0
19847.0
-10107.0
-50.9%
845.0
312.0
533.0
170.8%
2.0
2.0
0.0
0.0%
3
S1b
3 years
2365
2363
2
0.1%
12.550
12.554
-0.004
0.00%
17035.0
25894.0
-8859.0
-34.2%
409.0
198.0
211.0
106.6%
12.0
6.0
6.0
100.0%
4
S1b
5 years
2311
2296
15
0.7%
12.554
12.552
0.002
0.00%
10380.0
23187.0
-12807.0
-55.2%
614.0
168.0
446.0
265.5%
8.0
8.0
0.0
0.0%
5
S1c
3 years
2398
2386
12
0.5%
12.552
12.551
0.001
0.00%
17438.0
46956.0
-29518.0
-62.9%
456.0
15.0
441.0
2 940.0%
9.0
16.0
-7.0
-43.8%
6
S1c
5 years
2300
2313
-13
-0.6%
12.544
12.550
-0.006
0.00%
27839.0
38673.0
-10834.0
-28.0%
119.0
47.0
72.0
153.2%
14.0
15.0
-1.0
-6.7%
7
S2a
3 years
2877
2286
591
25.9%
12.292
12.553
-0.261
-2.10%
7853.0
18908.0
-11055.0
-58.5%
1191.0
223.0
968.0
434.1%
1.0
4.0
-3.0
-75.0%
8
S2a
5 years
2813
2246
567
25.2%
12.287
12.551
-0.264
-2.10%
9106.0
17514.0
-8408.0
-48.0%
642.0
176.0
466.0
264.8%
5.0
7.0
-2.0
-28.6%
9
S3a
3 years
3074
2234
840
37.6%
11.248
12.548
-1.300
-10.40%
7930.0
30366.0
-22436.0
-73.9%
803.0
54.0
749.0
1 387.0%
3.0
14.0
-11.0
-78.6%
10
S3a
5 years
3031
2207
824
37.3%
11.235
12.548
-1.313
-10.50%
-80780.0
22636.0
-103416.0
-456.9%
-228.0
68.0
-296.0
-435.3%
15.0
12.0
3.0
25.0%
11
S3b
3 years
3187
2292
895
39.0%
11.247
12.553
-1.306
-10.40%
14736.0
18438.0
-3702.0
-20.1%
631.0
241.0
390.0
161.8%
6.0
3.0
3.0
100.0%
12
S3b
5 years
3121
2250
871
38.7%
11.254
12.552
-1.298
-10.30%
13430.0
16251.0
-2821.0
-17.4%
629.0
206.0
423.0
205.3%
7.0
5.0
2.0
40.0%
13
S3c
3 years
3099
2256
843
37.4%
11.241
12.550
-1.309
-10.40%
14727.0
23972.0
-9245.0
-38.6%
422.0
114.0
308.0
270.2%
10.0
9.0
1.0
11.1%
14
S3c
5 years
3036
2224
812
36.5%
11.248
12.549
-1.301
-10.40%
12968.0
20278.0
-7310.0
-36.0%
416.0
107.0
309.0
288.8%
11.0
10.0
1.0
10.0%
15
S3d
3 years
3117
2263
854
37.7%
11.239
12.549
-1.310
-10.40%
19458.0
28245.0
-8787.0
-31.1%
304.0
86.0
218.0
253.5%
13.0
11.0
2.0
18.2%
16
S3d
5 years
3045
2227
818
36.7%
11.232
12.548
-1.316
-10.50%
-38068.0
27591.0
-65659.0
-238.0%
-359.0
62.0
-421.0
-679.0%
16.0
13.0
3.0
23.1%
This didn’t have a big impact though, so it appears the issue may be elsewhere.
13.13-13.25, 14.24-14.41, 14.58-16.00: Comparing against their markdown file and finding right columns
The original repository included a markdown file from a run of this code. Instead of comparing against the paper, I tried comparing against those results, as that should definitely match up, and can tell us if this code as it is is running as expected or not.
I copied the sall tables from Case_Detection_Results.md and Case_Detection_Results_5yrs.md into a single .csv file, then add that to the comparison.
Comparing the paper and repo against my results:
pd.read_csv('sall_compare_1e6_to_mine.csv')
Scenario
Interval
CostpAgent
CostpAgent_paper
CostpAgent_repo
CostPaperDiff
CostRepoDiff
CostPaperPerc
CostRepoPerc
QALYpAgent
QALYpAgent_paper
QALYpAgent_repo
QALYPaperDiff
QALYRepoDiff
QALYPaperPerc
QALYRepoPerc
ICER
ICER_paper
ICER_repo
ICERPaperDiff
ICERRepoDiff
ICERPaperPerc
ICERRepoPerc
IncrementalNMB
IncrementalNMB_paper
IncrementalNMB_repo
INMBPaperDiff
INMBRepoDiff
INMBPaperPerc
INMBRepoPerc
0
S1a
3 years
2430
2438
2439
-8
-9
-0.3%
-0.4%
12.558
12.560
12.560
-0.002
-0.002
0.00%
0.0%
13791
19632
18767
-5841
-4976
-29.8%
-26.5%
726
444
482
282
244
63.5%
50.6%
1
S1a
5 years
2355
2356
2355
-1
0
0.0%
0.0%
12.560
12.556
12.557
0.004
0.003
0.00%
0.0%
9740
19847
17603
-10107
-7863
-50.9%
-44.7%
845
312
375
533
470
170.8%
125.3%
2
S1b
3 years
2365
2363
2365
2
0
0.1%
0.0%
12.550
12.554
12.552
-0.004
-0.002
0.00%
0.0%
17035
25894
28168
-8859
-11133
-34.2%
-39.5%
409
198
167
211
242
106.6%
144.9%
3
S1b
5 years
2311
2296
2298
15
13
0.7%
0.6%
12.554
12.552
12.551
0.002
0.003
0.00%
0.0%
10380
23187
29091
-12807
-18711
-55.2%
-64.3%
614
168
105
446
509
265.5%
484.8%
4
S1c
3 years
2398
2386
2386
12
12
0.5%
0.5%
12.552
12.551
12.551
0.001
0.001
0.00%
0.0%
17438
46956
37782
-29518
-20344
-62.9%
-53.8%
456
15
76
441
380
2 940.0%
500.0%
5
S1c
5 years
2300
2313
2311
-13
-11
-0.6%
-0.5%
12.544
12.550
12.551
-0.006
-0.007
0.00%
-0.1%
27839
38673
34119
-10834
-6280
-28.0%
-18.4%
119
47
74
72
45
153.2%
60.8%
6
S2a
3 years
2877
2286
2895
591
-18
25.9%
-0.6%
12.292
12.553
12.282
-0.261
0.010
-2.10%
0.1%
7853
18908
21840
-11055
-13987
-58.5%
-64.0%
1191
223
298
968
893
434.1%
299.7%
7
S2a
5 years
2813
2246
2825
567
-12
25.2%
-0.4%
12.287
12.551
12.278
-0.264
0.009
-2.10%
0.1%
9106
17514
19840
-8408
-10734
-48.0%
-54.1%
642
176
240
466
402
264.8%
167.5%
8
S3a
3 years
3074
2234
3071
840
3
37.6%
0.1%
11.248
12.548
11.237
-1.300
0.011
-10.40%
0.1%
7930
30366
34146
-22436
-26216
-73.9%
-76.8%
803
54
82
749
721
1 387.0%
879.3%
9
S3a
5 years
3031
2207
3024
824
7
37.3%
0.2%
11.235
12.548
11.236
-1.313
-0.001
-10.50%
0.0%
-80780
22636
22117
-103416
-102897
-456.9%
-465.2%
-228
68
152
-296
-380
-435.3%
-250.0%
10
S3b
3 years
3187
2292
3195
895
-8
39.0%
-0.3%
11.247
12.553
11.247
-1.306
0.000
-10.40%
0.0%
14736
18438
19575
-3702
-4839
-20.1%
-24.7%
631
241
466
390
165
161.8%
35.4%
11
S3b
5 years
3121
2250
3113
871
8
38.7%
0.3%
11.254
12.552
11.243
-1.298
0.011
-10.30%
0.1%
13430
16251
17541
-2821
-4111
-17.4%
-23.4%
629
206
388
423
241
205.3%
62.1%
12
S3c
3 years
3099
2256
3121
843
-22
37.4%
-0.7%
11.241
12.550
11.242
-1.309
-0.001
-10.40%
0.0%
14727
23972
21507
-9245
-6780
-38.6%
-31.5%
422
114
299
308
123
270.2%
41.1%
13
S3c
5 years
3036
2224
3056
812
-20
36.5%
-0.7%
11.248
12.549
11.240
-1.301
0.008
-10.40%
0.1%
12968
20278
17870
-7310
-4902
-36.0%
-27.4%
416
107
274
309
142
288.8%
51.8%
14
S3d
3 years
3117
2263
3132
854
-15
37.7%
-0.5%
11.239
12.549
11.243
-1.310
-0.004
-10.40%
0.0%
19458
28245
21157
-8787
-1699
-31.1%
-8.0%
304
86
322
218
-18
253.5%
-5.6%
15
S3d
5 years
3045
2227
3066
818
-21
36.7%
-0.7%
11.232
12.548
11.237
-1.316
-0.005
-10.50%
0.0%
-38068
27591
25402
-65659
-63470
-238.0%
-249.9%
-359
62
158
-421
-517
-679.0%
-327.2%
Comparing my results and the repo against the papers results:
pd.read_csv('sall_compare_1e6_to_paper.csv')
Scenario
Interval
CostpAgent_paper
CostpAgent
CostpAgent_repo
CostMyDiff
CostMyPerc
CostRepoDiff
CostRepoPerc
QALYpAgent_paper
QALYpAgent
QALYpAgent_repo
QALYMyDiff
QALYMyPerc
QALYRepoDiff
QALYRepoPerc
ICER_paper
ICER
ICER_repo
ICERMyDiff
ICERMyPerc
ICERRepoDiff
ICERRepoPerc
IncrementalNMB_paper
IncrementalNMB
IncrementalNMB_repo
INMBMyDiff
INMBMyPerc
INMBRepoDiff
INMBRepoPerc
0
S1a
3 years
2438
2430
2439
8
0.30%
-1
0.00%
12.560
12.558
12.560
0.002
0.00%
0.000
0.00%
19632
13791
18767
5841
42.4%
865
4.6%
444
726
482
-282
-38.8%
-38
-7.9%
1
S1a
5 years
2356
2355
2355
1
0.00%
1
0.00%
12.556
12.560
12.557
-0.004
0.00%
-0.001
0.00%
19847
9740
17603
10107
103.8%
2244
12.7%
312
845
375
-533
-63.1%
-63
-16.8%
2
S1b
3 years
2363
2365
2365
-2
-0.10%
-2
-0.10%
12.554
12.550
12.552
0.004
0.00%
0.002
0.00%
25894
17035
28168
8859
52.0%
-2274
-8.1%
198
409
167
-211
-51.6%
31
18.6%
3
S1b
5 years
2296
2311
2298
-15
-0.60%
-2
-0.10%
12.552
12.554
12.551
-0.002
0.00%
0.001
0.00%
23187
10380
29091
12807
123.4%
-5904
-20.3%
168
614
105
-446
-72.6%
63
60.0%
4
S1c
3 years
2386
2398
2386
-12
-0.50%
0
0.00%
12.551
12.552
12.551
-0.001
0.00%
0.000
0.00%
46956
17438
37782
29518
169.3%
9174
24.3%
15
456
76
-441
-96.7%
-61
-80.3%
5
S1c
5 years
2313
2300
2311
13
0.60%
2
0.10%
12.550
12.544
12.551
0.006
0.00%
-0.001
0.00%
38673
27839
34119
10834
38.9%
4554
13.3%
47
119
74
-72
-60.5%
-27
-36.5%
6
S2a
3 years
2286
2877
2895
-591
-20.50%
-609
-21.00%
12.553
12.292
12.282
0.261
2.10%
0.271
2.20%
18908
7853
21840
11055
140.8%
-2932
-13.4%
223
1191
298
-968
-81.3%
-75
-25.2%
7
S2a
5 years
2246
2813
2825
-567
-20.20%
-579
-20.50%
12.551
12.287
12.278
0.264
2.10%
0.273
2.20%
17514
9106
19840
8408
92.3%
-2326
-11.7%
176
642
240
-466
-72.6%
-64
-26.7%
8
S3a
3 years
2234
3074
3071
-840
-27.30%
-837
-27.30%
12.548
11.248
11.237
1.300
11.60%
1.311
11.70%
30366
7930
34146
22436
282.9%
-3780
-11.1%
54
803
82
-749
-93.3%
-28
-34.1%
9
S3a
5 years
2207
3031
3024
-824
-27.20%
-817
-27.00%
12.548
11.235
11.236
1.313
11.70%
1.312
11.70%
22636
-80780
22117
103416
-128.0%
519
2.3%
68
-228
152
296
-129.8%
-84
-55.3%
10
S3b
3 years
2292
3187
3195
-895
-28.10%
-903
-28.30%
12.553
11.247
11.247
1.306
11.60%
1.306
11.60%
18438
14736
19575
3702
25.1%
-1137
-5.8%
241
631
466
-390
-61.8%
-225
-48.3%
11
S3b
5 years
2250
3121
3113
-871
-27.90%
-863
-27.70%
12.552
11.254
11.243
1.298
11.50%
1.309
11.60%
16251
13430
17541
2821
21.0%
-1290
-7.4%
206
629
388
-423
-67.2%
-182
-46.9%
12
S3c
3 years
2256
3099
3121
-843
-27.20%
-865
-27.70%
12.550
11.241
11.242
1.309
11.60%
1.308
11.60%
23972
14727
21507
9245
62.8%
2465
11.5%
114
422
299
-308
-73.0%
-185
-61.9%
13
S3c
5 years
2224
3036
3056
-812
-26.70%
-832
-27.20%
12.549
11.248
11.240
1.301
11.60%
1.309
11.60%
20278
12968
17870
7310
56.4%
2408
13.5%
107
416
274
-309
-74.3%
-167
-60.9%
14
S3d
3 years
2263
3117
3132
-854
-27.40%
-869
-27.70%
12.549
11.239
11.243
1.310
11.70%
1.306
11.60%
28245
19458
21157
8787
45.2%
7088
33.5%
86
304
322
-218
-71.7%
-236
-73.3%
15
S3d
5 years
2227
3045
3066
-818
-26.90%
-839
-27.40%
12.548
11.232
11.237
1.316
11.70%
1.311
11.70%
27591
-38068
25402
65659
-172.5%
2189
8.6%
62
-359
158
421
-117.3%
-96
-60.8%
I initially misunderstood this, and started troubleshooting, revisiting the installation instructions:
And how this fails because rredis has been removed from CRAN - hence, the method I had used instead, of loading the local folder as a package.
ERROR: dependency ‘rredis’ is not available for package ‘epicR’
* removing ‘/home/amy/Documents/stars/stars-reproduce-johnson-2021/reproduction/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu/epicR’
Warning message:
In i.p(...) :
installation of package ‘/tmp/RtmpuwIUmF/file723a23834b02/epicR_1.27.7.tar.gz’ had non-zero exit status
Reflection
Worth being aware of this for an R package, that dependencies becoming unavailable can make this installation method impossible.
However, I then realised my mistake, and revisiting the tables, recognised that actually:
For costs and QALYS, my results and the respository results were very similar (and both were very different from the paper for scenarios 2 and 3)
For ICER and INMB, my results were very different to the repository for all scenarios, which were in term very different to the paper (i.e. none match!)
This gives me assurance that I am getting the right results for costs and QALYs, but that likely there is a difference I hadn’t noticed.
I then wondered if perhaps I were looking at the wrong table from the .md file.
Reflection
Having instructions in repository to guide me to the tables, or having labels in the .Rmd itself to say this was Table 3 and so on, would have been very helpful here, as it seems to be taking me a while to get my head around!
The Cost Effectiveness Plane table is “adjusted to the total population”. I made a .csv with the CEPlane from their .md and then modified Process_Model_Results.Rmd to use CEplane instead of sall.
In that table, you can see CostpAgentAll comes out lower than CostpAgent, for example, which matches up to paper, so I used those “All” columns.
This resolved the issue for costs and QALYS, which now both matched the paper:
pd.read_csv('tab3_compare_to_original.csv')
Scenario
Interval
CostpAgent_paper
CostpAgentAll
CostpAgentAll_repo
CostMyDiff
CostMyPerc
CostRepoDiff
CostRepoPerc
QALYpAgent_paper
QALYpAgentAll
QALYpAgentAll_repo
QALYMyDiff
QALYMyPerc
QALYRepoDiff
QALYRepoPerc
ICER_paper
ICER
ICER_repo
ICERMyDiff
ICERMyPerc
ICERRepoDiff
ICERRepoPerc
IncrementalNMB_paper
INMB
INMB_repo
INMBMyDiff
INMBMyPerc
INMBRepoDiff
INMBRepoPerc
0
S1a
3 years
2438
2430
2439
8
0.3%
-1
0.0%
12.560
12.558
12.560
0.002
0.0%
0.000
0%
19632
13791
18767
5841
42.4%
865
4.6%
444
703
446
-259
-36.8%
-2
-0.40%
1
S1a
5 years
2356
2355
2355
1
0.0%
1
0.0%
12.556
12.560
12.557
-0.004
0.0%
-0.001
0%
19847
9740
17603
10107
103.8%
2244
12.7%
312
868
411
-556
-64.1%
-99
-24.10%
2
S1b
3 years
2363
2365
2365
-2
-0.1%
-2
-0.1%
12.554
12.550
12.552
0.004
0.0%
0.002
0%
25894
17035
28168
8859
52.0%
-2274
-8.1%
198
386
131
-188
-48.7%
67
51.10%
3
S1b
5 years
2296
2311
2298
-15
-0.6%
-2
-0.1%
12.552
12.554
12.551
-0.002
0.0%
0.001
0%
23187
10380
29091
12807
123.4%
-5904
-20.3%
168
637
142
-469
-73.6%
26
18.30%
4
S1c
3 years
2386
2398
2386
-12
-0.5%
0
0.0%
12.551
12.552
12.551
-0.001
0.0%
0.000
0%
46956
17438
37782
29518
169.3%
9174
24.3%
15
433
40
-418
-96.5%
-25
-62.50%
5
S1c
5 years
2313
2300
2311
13
0.6%
2
0.1%
12.550
12.544
12.551
0.006
0.0%
-0.001
0%
38673
27839
34119
10834
38.9%
4554
13.3%
47
142
110
-95
-66.9%
-63
-57.30%
6
S2a
3 years
2286
2284
2287
2
0.1%
-1
0.0%
12.553
12.555
12.552
-0.002
0.0%
0.001
0%
18908
7853
21840
11055
140.8%
-2932
-13.4%
223
703
186
-480
-68.3%
37
19.90%
7
S2a
5 years
2246
2235
2245
11
0.5%
1
0.0%
12.551
12.548
12.550
0.003
0.0%
0.001
0%
17514
9106
19840
8408
92.3%
-2326
-11.7%
176
418
137
-242
-57.9%
39
28.50%
8
S3a
3 years
2234
2220
2232
14
0.6%
2
0.1%
12.548
12.551
12.548
-0.003
0.0%
0.000
0%
30366
7930
34146
22436
282.9%
-3780
-11.1%
54
556
45
-502
-90.3%
9
20.00%
9
S3a
5 years
2207
2218
2207
-11
-0.5%
0
0.0%
12.548
12.537
12.548
0.011
0.1%
0.000
0%
22636
-80780
22117
103416
-128.0%
519
2.3%
68
-126
67
194
-154.0%
1
1.50%
10
S3b
3 years
2292
2273
2289
19
0.8%
3
0.1%
12.553
12.550
12.553
0.003
0.0%
0.000
0%
18438
14736
19575
3702
25.1%
-1137
-5.8%
241
440
243
-199
-45.2%
-2
-0.80%
11
S3b
5 years
2250
2258
2248
-8
-0.4%
2
0.1%
12.552
12.548
12.551
0.004
0.0%
0.001
0%
16251
13430
17541
2821
21.0%
-1290
-7.4%
206
366
183
-160
-43.7%
23
12.60%
12
S3c
3 years
2256
2233
2255
23
1.0%
1
0.0%
12.550
12.545
12.550
0.005
0.0%
0.000
0%
23972
14727
21507
9245
62.8%
2465
11.5%
114
246
148
-132
-53.7%
-34
-23.00%
13
S3c
5 years
2224
2219
2221
5
0.2%
3
0.1%
12.549
12.545
12.549
0.004
0.0%
0.000
0%
20278
12968
17870
7310
56.4%
2408
13.5%
107
251
113
-144
-57.4%
-6
-5.30%
14
S3d
3 years
2263
2241
2261
22
1.0%
2
0.1%
12.549
12.545
12.550
0.004
0.0%
-0.001
0%
28245
19458
21157
8787
45.2%
7088
33.5%
86
230
124
-144
-62.6%
-38
-30.60%
15
S3d
5 years
2227
2222
2226
5
0.2%
1
0.0%
12.548
12.539
12.548
0.009
0.1%
0.000
0%
27591
-38068
25402
65659
-172.5%
2189
8.6%
62
-42
67
104
-247.6%
-5
-7.50%
This aligns with the table 3 caption from paper about symptomatic patients (scenario 2) and smoking history (scenario 3):
“The ‘All patients’ strategy encompassed the entire population of interest. 59% of the population was included in the ‘Symptomatic’ strategy, and 46% in the ‘Smoking history’ strategy. To maintain a constant reference population, per patient costs and QALYs were adjusted to include patients not selected by the strategy. For the symptomatic strategy, the costs (and QALYs) shown are the sum of the costs (QALYs) of patients not included in the symptomatic strategy, and the costs (QALYs) of those included, weighted by the proportion in each group. The results of smoking history strategy were adjusted in the same fashion” Johnson et al. (2021)
16.02-16.33: Looking at ICER and INMB
I tried to see if I was using the wrong ICER, or what might explain the difference.
Looking at table 3 in the paper, if I were to calculate the ICER manually from change in costs over change in QALYs, I would get:
(2438-2151)/(12.560-12.546)
20499.999999998356
20499 is quite different from 19632, although I am assuming that might be because I am oversimplifying in this calculation, and that other things went into that calculation.
Looking at my results, I wondered if I might be using the wrong column, as we have ICER and ICERAdj. I had a look at the original output of incrementalcosts and incrementalqaly in my .md file and the original, and realised that actually although the costs and qalys are very similar, it has a big impact on the ICER. Therefore, it seems this could be related to the number of agents.
Timings
import syssys.path.append('../')from timings import calculate_times# Minutes used prior to todayused_to_date =371# Times from todaytimes = [ ('09.28', '09.38'), ('10.10', '10.19'), ('10.20', '11.30'), ('11.32', '11.36'), ('13.08', '13.10'), ('13.13', '13.25'), ('14.24', '14.41'), ('14.58', '16.00'), ('16.02', '16.33')]calculate_times(used_to_date, times)
Time spent today: 217m, or 3h 37m
Total used to date: 588m, or 9h 48m
Time remaining: 1812m, or 30h 12m
Used 24.5% of 40 hours max
References
Johnson, Kate M., Mohsen Sadatsafavi, Amin Adibi, Larry Lynd, Mark Harrison, Hamid Tavakoli, Don D. Sin, and Stirling Bryan. 2021. “Cost Effectiveness of CaseDetectionStrategies for the EarlyDetection of COPD.”Applied Health Economics and Health Policy 19 (2): 203–15. https://doi.org/10.1007/s40258-020-00616-2.