
A simulation modelling toolkit for organising outpatient dialysis

services during the COVID-19 pandemic.

Michael Allen1, Amir Bhanji2, Jonas Willemsen2, Steven Dudfield2, Stuart Logan1, and
Thomas Monks ∗3

1
University of Exeter Medical School & NIHR South West Peninsula Applied Research Collaboration (ARC).

2Portsmouth Hospitals, NHS Trust
3University of Exeter Medical School

July 1, 2020

∗Corresponding authors: m.allen@exeter.ac.uk and t.m.w.monks@exeter.ac.uk



Appendix S2: Vehicle routing methods

Model formulation

Our primary solution method is via meta-heuristic. However, for clarity we formulate the CVRP as a
Mixed Integer Programme (MIP). Note that it is possible to use exact methods to solve the MIP in small to
medium instances. We tested this approach using the industrial solver Gurobi - a modern powerful solver
that exploits parallelism. For instances as small as 15 patients we found that the optimality gap between
was a high as %40 after 2.5 hours of runtime (although we note that a time limit and/or performance
tweaks could be made to Gurobi). We also found that the average performance of Iterated Local Search
matched or exceeded Gurobi on larger instances (40+ patients) when the runtime was seconds as opposed
to hours.

If:

n is the number of patients

N is the set of patients {1, 2, ..., n}

V is the set of vertices (nodes) to visit. V = {0} ∪N

A is the set of arcs (links) A =
{

(i, j) ∈ V 2 : i 6= j
}

cij is cost of travel over arc (i, j) ∈ A

Q is the vehicle capacity (for patient transport this is an integer)

qi is the load represented by a patient (for patients this is always an integer = 1)

min

n∑
i=1

n∑
j=1

cijxij

s.t.

n∑
i=1

xij = 1, j ∈ N, j 6= i

n∑
j=1

xij = 1, i ∈ N, i 6= j

if xij = 1 ⇒ ui + qj = uj i, j ∈ A : j 6= 0, i 6= 0

qi ≤ ui ≤ Q i ∈ N
xij ∈ {0, 1} i, j ∈ A

Clarke-Wright Savings

Assume there are two patients A and B, and a transport vehicle is with 2 seats is based at a depot D.

• The the time to travel from D to A is 30 minutes,

• The time to travel from D to B is 40 minutes

• The travel time from A to B is 10 minutes.

If single trips are used the the total time needed to transport all patients to hospital is 2(30) + 2(40) = 140
minutes.

If the capacity of an ambulances is increased to two seats then the saving in time relative to single
trips is 30 + 40− 10 = 60 minutes. I.e D → A→ B → D is one trip from D to A (30 minutes) + one
trips from B to D (40 minutes) minus the time to travel from A to B (10 minutes).

The algorithm calculates these savings for all combinations of patient locations. It constructs routes by
selecting the locations with the highest saving first. In the sequential version of the algorithm additional
adjacent links are added again prioritised by savings.

1



Iterated Local Search

Iterated Local Search (ILS) is a meta-heuristic designed to overcome the problem of hill-climbing algorithms
becoming stuck in local optima (good solutions, that are not the global optimum or best). ILS runs
hill-climbing algorithms multiple times and stochastically climbs (or descends) the hill of local-optima.
Algorithm 1 describes our implementation of the standard ILS procedure. Our initial solution was fed
through from the Clarke-Wright Savings procedure. For each problem instance we iterated 20 times over
a first improvement decent local search procedure that employed 2-Opt swaps of patient allocations to
routes. To balance exploitation and exploration of the space of local optima, we use an Epsilon-Greedy (ε
= 0.2) implementation of the homebase function (see algorithm 2). Our perturbation function employed a
4-Opt (the Double-Bridge) swap.

Algorithm 1: Iterated Local Search

Given P patient locations and n iterations to run.
S ← SequentialClarkeWrightSavings(P )
H ← S
Best← S
for i <= n do

S ← LocalSearch(Copy(S))
if Quality(S) > Quality(Best) then

Best← S
H ← NewHomeBase(H,S)
S ← Perturbation(H)

return Best

Algorithm 2: Epsilon-Greedy NewHomeBase

Given ε,H and S
u← Uniform(0, 1)
if u > ε then

if Quality(S) > Quality(H) then
return S

else
return H

else
return S

2


