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Abstract

This study presents two simulation modelling tools to support the organisation of networks

of dialysis services during the COVID-19 pandemic. These tools were developed to support

renal services in the South of England (the Wessex region caring for 650 dialysis patients),

but are applicable elsewhere. A discrete-event simulation was used to model a worst case

spread of COVID-19, to stress-test plans for dialysis provision throughout the COVID-19

outbreak. We investigated the ability of the system to manage the mix of COVID-19 positive

and negative patients, the likely effects on patients, outpatient workloads across all units,

and inpatient workload at the centralised COVID-positive inpatient unit. A second Monte-

Carlo vehicle routing model estimated the feasibility of patient transport plans. If current out-

patient capacity is maintained there is sufficient capacity in the South of England to keep

COVID-19 negative/recovered and positive patients in separate sessions, but rapid reallo-

cation of patients may be needed. Outpatient COVID-19 cases will spillover to a secondary

site while other sites will experience a reduction in workload. The primary site chosen to

manage infected patients will experience a significant increase in outpatients and inpatients.

At the peak of infection, it is predicted there will be up to 140 COVID-19 positive patients

with 40 to 90 of these as inpatients, likely breaching current inpatient capacity. Patient trans-

port services will also come under considerable pressure. If patient transport operates on a

policy of one positive patient at a time, and two-way transport is needed, a likely scenario

estimates 80 ambulance drive time hours per day (not including fixed drop-off and ambu-

lance cleaning times). Relaxing policies on individual patient transport to 2-4 patients per

trip can save 40-60% of drive time. In mixed urban/rural geographies steps may need to be

taken to temporarily accommodate renal COVID-19 positive patients closer to treatment

facilities.
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Introduction

Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) and the disease it causes

COVID-19 (henceforth known as COVID) is causing widespread disruption to normal health-

care services, as the number COVID-positive cases increases. In the UK a worst case scenario

is that 80% of the population are infected over a three month period, if controls are not put in

place [1]. Although social distancing measures are in place both in the UK and internationally,

patients with Chronic Kidney Disease who must visit dialysis units are limited in their ability

to be fully isolated. It is possible therefore that spread in the dialysis population will be faster

than in the general population.

Rapid guidelines for dialysis service delivery have been published [2–4]. These include sepa-

ration of COVID-positive and COVID-negative patients; dialysis units working with transport

providers to minimise the risk of cross-infection; and continuing to treat patients as close to

home as possible. [2].

Planning service delivery that separates COVID-positive patients is complicated, due to the

uncertainty of the spread of SARS-CoV-2, the variability seen in symptom onset, length of

infectivity, and regional delivery of dialysis.

We therefore sought to support decision making in the period prior to peak infection by

developing mathematical models of dialysis service delivery and patient transport. We aimed

to provide reusable tools to provide rapid information under various scenarios including a

worst case three month spread.

Materials and methods

We developed a discrete-event simulation (DES) model of service delivery in the dialysis net-

work. DES is an appropriate method to capture the stochastic dynamics of a capacity con-

strained system and model patients individually [5]. DES has been applied extensively in

health service delivery [6–9] and previously to model dialysis demand [10] as well as networks

of care facilities [11]. We also developed a Monte-Carlo vehicle routing model to model patient

transport. The algorithm used, a combination of the Clarke-Wright Savings [12] method and

Iterated Local Search [13], finds good solutions grouping and ordering patient pickup.

Study setting

We apply the service delivery modelling tools [14] in the South of England in the region of

Wessex: a mixed urban/rural setting where the renal dialysis service cares for 644 patients. The

service operates a network of nine centres. The largest of which is located at the Queen Alexan-

dra (QA) Hospital, Portsmouth. To access dialysis services 75% of patients make use of patient

transport services. During the epidemic, COVID-positive patients will be treated separately

from negative and recovered. The Queen Alexandra will be used as the primary site for positive

outpatients and inpatients with spillover to a second site (Basingstoke) when capacity is insuf-

ficient. Patient transport services will provide COVID only ambulances with a policy of single

patient transport.

In the analysis we excluded home patients (n = 80) and due to its separation from the main-

land the Isle of Wight (n = 44).

The geography of units and patients is described in more detail in S1 Appendix.

Outcome measures

We estimated the the change in outpatient and inpatient workload during the epidemic in

terms of COVID-positive negative and recovered, at each dialysis unit in the network.
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Estimates were produced over periods three to six months. We also estimated the number of

patients who were required to travel to a different unit from normal and the change in travel

time.

We estimated the vehicle total travel implications for patient transport services given a

range of COVID-positive scenarios across the region’s geography.

Data sources

Researchers had no access to individual patient level data. To ensure confidentiality, patient

geographic locations was provided at the UK postcode sector level (alternatives might be out-

put areas or northings and eastings). Travel times between these sectors were estimated using

Routino (routino.org) with data from OpenStreetMap (openstreetmap.org).

The worst case time of spread of COVID-positive was taken from Fergeson et al. [1]. Mor-

tality rate, time a patient was COVID-positive before admission and inpatient length of stay

were local parameters.

Analysis environment

All models were written in Python 3.8. We used SimPy 3 [15] to implement the DES model.

The transport model was implemented using pandas [16] and NumPy [17]. All charts were

produced with MatPlotLib [18]. We provide all code and data used in the study and follow the

STRESS reporting guidelines for DES [19]. The dialysis model results were run on an Intel i9-

7980XE CPU with 64GB RAM running Ubuntu 19.10 Linux. The transport modelling results

were run on an Intel i9-9900K CPU with 64GB RAM running the Pop!_OS 19.10 Linux.

Verification and validation

We performed model testing (verification) as models were developed in line with simulation

standards [20]. Two of the authors are experienced modellers and verification included a code

review and cross working on models. Quantitative validation of models (checking models are

appropriate detailed and sufficiently accurate) is challenging in the COVID epidemic as the

forecast is of unprecedented conditions. We instead worked closely with clinicians, managers

and informatics specialists within the local health system to review iterative versions of the

model. We also opted to model a range of likely scenarios including what is widely believed to

be the worst case.

Dialysis model

The dialysis model runs through a defined period (e.g. one year) and simulates the progression

of patients through phases of COVID infection: negative, positive (with some requiring inpa-

tient care) and recovered or died. The speed of progression of infection through the population

may be varied (typically 3-12 months).

As patients change COVID state the model seeks to place them in the appropriate unit and

session, opening up COVID-positive sessions in units that allow it. COVID-positive patients

do not mix with any other patients. Opening up COVID-positive sessions causes other patients

to be displaced from that session, and the model seeks to reallocate them either to the same

unit or, if there is no space left, to the closest alternative unit.

The dialysis model is run 30 times to simulate 30 alternative years as, due to the randomness

of infection, no two years will be exactly alike. Results show typical (median) and extreme

years.
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Patient progression model. A simplification used in this model is that all patients should

receive dialysis three times weekly, with each patient allocated to a starting day for the week of

either Monday or Tuesday.

A proportion of patients moves through phases of COVID state and care (Fig 1). The pro-

portions of patients and times in each phase is either fixed or sampled from stochastic distribu-

tions as given in Table 1. We assume that COVID patients must be separated from uninfected

patients, and that patients who have recovered from a COVID episode do not mix with those

currently testing COVID positive. We do not deal specifically with suspected COVID patients

in the model, anticipating that rapid testing will soon be available to diagnose which group

they belong to.

The baseline model takes a worst case progression of COVID, infecting 80% of the dialysis

population over 3 months.

Unit search strategy. When allocating patients to units, the following search strategy is

employed.

• COVID negative: First look for place in current unit attended. If no room there place in the

closest unit (judged by estimated travel time) with available space.

• COVID-positive: Place all COVID-positive patients first in Queen Alexandra Hospital,

Portsmouth, and if capacity there is fully utilised open up capacity in Basingstoke. If a new

Fig 1. Schematic representation of patient pathway.

https://doi.org/10.1371/journal.pone.0237628.g001

Table 1. Baseline model parameters.

Parameter Distribution Baseline values

Proportion patients infected Fixed 0.8

Time to infection (3 month spread) Normal Mean = 60, SD = 15

Time positive/symptomatic (outpatient) Uniform Low = 7, High = 14

Proportion requiring inpatient care Fixed 0.6

Time inpatient before admission Uniform Low = 3, High = 7

Time inpatient Uniform Low = 7, High = 14

Mortality rate Fixed 0.15

https://doi.org/10.1371/journal.pone.0237628.t001
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COVID session is required, the model will displace all COVID negative patients in that ses-

sion, and seek to re-allocate them according to the rules for allocating COVID negative

patients.

• COVID-positive inpatient: All inpatients are placed in Queen Alexandra Hospital, Ports-

mouth (though the model allows searching by travel time if another unit were to open to

renal COVID-positive inpatients).

• COVID-recovered: Treat as COVID negative.

• Unallocated patients: If a patient cannot be allocated to any unit, the model attempts to allo-

cate them each day.

Patients, in the model, may end up being cared for at a more distant unit than their starting

unit. Once every week, the model seeks to reallocate patients back to their starting unit, or clos-

est available unit if room in their starting unit is not available. This will also compress COVID-

positive patients into as few units and sessions as possible.

COVID-positive sessions are converted back to COVID negative sessions when they are no

longer needed.

Patient transport model

The transport model provides an estimate of the vehicle travel time needed to transport

COVID-positive patients to (and from) an outpatient treatment facility.

Transport scenarios. The model can vary the capacity of transport vehicles (e.g. the num-

ber of seats per ambulance) and the number of COVID positive patients in the population

who need COVID-positive capable transport at any time.

We model the following daily scenarios:

• A population of 20 patients are COVID-positive.

• A population of 40 patients are COVID-positive.

• A population of 60 patients are COVID-positive.

• Ambulances are able to pick up between 1 and 4 COVID-positive patients on a single trip.

For example, if COVID spreads through the population in three months, there may be 140

COVID-positive patients. If 40% are inpatients, and 75% require transport, there may be 60-70

patients requiring COVID-positive transport (30-35 on each day).

Simulation of pickup locations. There is no robust way to estimate which patients

will become infected and at what time. The model therefore uses a Monte-Carlo sampling

approach to simulate different groups of patients becoming infected. The sampling uses the

geographic distribution of patient home postcode sectors. We firstly assume that all patients

are equally likely to become infected. We then weight the sample by the number of patients

within each postcode sector. I.e. areas with more patients are more likely to be sampled.

The model works by performing multiple runs. On each run a different cohort of patients is

selected. This means that hundreds of combinations of COVID-positive patient locations can be

explored. The more common combinations will be sampled more frequently due to the weight-

ing. For each sample a set of transport routes are created. The transport routes group patients

together and order them for transport to the hospital. The grouping is based on travel time.

We simplified the problem to consider a symmetric road network. That is travel time out-

ward to a patient is the same as inward travel time. In reality road networks are asymmetric,

for example due to one way systems, and roadworks.
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Transport route construction. After a set of patient locations is chosen a set of routes are

constructed. The number of routes needed depends on capacity of the ambulance. Each route

has a home base for the ambulance. We have simplified the problem so that the ambulance is

based at the Queen Alexandra (in reality it will start from an depot elsewhere, but this is only

one leg of multiple journeys). In each scenario, we also simplified the problem so that all

ambulances have the same capacity (no. of seats).

When vehicle capacity is equal to one then the cost of all routes is equal to the travel time to

and from all patients. This is our baseline scenario and all other scenarios are compared to it.

When vehicles have capacity greater than one, we simplify the problem of patient transport

to the deterministic Capacitated Vehicle Routing Problem (CVRP). The CVRP is a well

known and studied problem in the vehicle routing literature. As we must solve medium to

large CRVP instances thousands of times we do not make use of an industrial solver, such

as Gurobi to solve to optimality, due to model runtime. Here we use a two-step heuristic

approach. We first use Sequential Clarke-Wright Savings [12] and then use this as the initial

‘home base’ in a Iterated Local Search [13] meta-heuristic algorithm. Details of the heuristics

are provided in S2 Appendix.

Results

Dialysis network

Currently the median travel time from home to dialysis unit (one way, with a single passenger)

is 14 minutes. The minimum, lower quartile, upper quartile, and maximum travel times are 1,

9, 22, and 76 minutes.

Currently there is sufficient capacity for 668 dialysis patients in the outpatient sessions

which are currently open, with 583 patients currently receiving dialysis (87% capacity

utilisation).

Figs 2, 3 and 4 show the effect of COVID progression if 80% of patients are infected over

three months. If COVID progresses through 80% of the population in three months then, at

the peak, there are up to about 125 COVID-positive patients (115-140 across the 30 model

runs). Outpatients positives peak at about 65 (60-70) and inpatient positives peak at about 70

(60-85).

In the planned strategy of using half of one of the largest units (Queen Alexandra) for

COVID-positive dialysis outpatients, and then using a second unit (Basingstoke, also provid-

ing up to half of its capacity for COVID-positive dialysis outpatient patients) for any excess,

the dialysis system copes without any patients being unable to be allocated to a session (or

without any need in dropping dialysis frequency). Workload in units that do not take COVID-

positive outpatients will fall during the outbreak (though some work will flow back to them if

they need to care for COVID-negative patients displaced from the units caring for COVID-

positive patients).

One unit (Queen Alexandra) takes all COVID-positive inpatients in the model. The novel

workload of treating COVID-positive patients who would otherwise not need inpatient care

will likely stress inpatient care systems.

Outpatients may be displaced from their usual unit of care either because they need to travel

to a COVID-positive session in another hospital, or because their unit has had to free up ses-

sions for COVID-positive sessions. These patients typically require 20 minutes extra travel

time to get to their temporary place of care (assuming they are travelling alone), with some

requiring 50 minutes extra travel in each direction to/from dialysis.
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Patient transport

Figs 5 and 6 illustrate the travel times distribution inbound, and inbound plus outbound (dou-

bled inbound times), respectively, by transport capacity size of the COVID positive patient

cohort.

A patient transport policy where a single patients are transported at a time has a median

time substantially higher than all multi-occupancy policies. In all COVID caseload scenarios

the largest improvement is seen when a additional patient is transported in each trip. Further

improvement is seen if vehicle capacity is increased to three or four patients.

For example, if 40 COVID-positive patients need inbound and outbound transport, then a

a median of 80.0 hours (inter-quartile range = 12.5 hours) of ambulance driving time (not

including fixed drop-off and clean times) is required per day. If the transport capacity of vehi-

cles is increased to two, three or four patient seating capacity, the median travel time require-

ments are reduced to 48 hours (a 40% reduction relative to single occupancy vehicles), 38

hours (52% reduction) and 33 hours (60% reduction), respectively.

Fig 2. Patient state over time by unit. The patient population progresses through infection over three months (with

80% infected). The bold line shows the median results of 30 trials, and the fainter lines show the minimum and

maximum from the 30 trials.

https://doi.org/10.1371/journal.pone.0237628.g002
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Discussion

The results indicate that, if current outpatient capacity is maintained, the dialysis units should

be able to cope with the worst-case scenario of rapid (three month) spread of COVID, but that

workloads will shift to the central hospital. Coping with a rapid spread of COVID will require

rapid reallocation of patients to different sessions and units, an effect likely to also impact on

ambulance transfer services who will see journey times increase, and have reduced efficiency

of having to split COVID positive and COVID-negative patients.

It appears likely that there will be significant inpatient pressures, with current capacity likely

to be breached. It may be necessary to consider moving dialysis equipment during the peak

COVID-positive workload when demand on units taking COVID-negative patients only will

be reduced.

Fig 3. Progression of patient population through COVID infection, assuming 80% become infected over three months,

with 15% mortality. The figure also shows the number of patients not allocated to a dialysis session at any time. The bold line

shows the median results of 30 trials, and the fainter lines show the minimum and maximum from the 30 trials.

https://doi.org/10.1371/journal.pone.0237628.g003
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Fig 4. Patient displacement. The number of patients displaced from their current unit (left panel) and the additional travel

time to the unit of care (right panel) for displaced patients. These results do not include those receiving inpatient care. The

patient population progresses through infection over three months (with 80% infected). The bold line shows the median

results of 30 trials, and the fainter lines show the minimum and maximum from the 30 trials.

https://doi.org/10.1371/journal.pone.0237628.g004

Fig 5. One-way ambulance transport time distributions (1000 model runs). Results compare population COVID-positive and ambulance seating capacity (e.g.

2 = 2 seats.) Figures do not include ambulance clean-down/turnaround time.

https://doi.org/10.1371/journal.pone.0237628.g005
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The current practice of transporting COVID-positive patients individually appears unsus-

tainable. The results demonstrate that single seat ambulances face a challenge in transporting

COVID-positive patients to and from the Queen Alexandra on a given day. In each scenario,

there is significant savings from using the additional ambulance capacity for more COVID-

positive patients. In each scenario, the biggest relative improvement is seen when capacity

is increased to 2 seats (e.g. reducing ambulance drive time from 75 to about 45 hours per day

for 40 patient two-way journeys). Increasing to 2-4 seats has further benefit, but returns are

diminishing.

Strengths of the study

Much of data science’s initial COVID modelling effort has, rightly, been focused on epidemiol-

ogy [1] and intensive care unit (ICU) capacity. Our toolkit complements the existing epidemi-

ological and ICU literature and aligns itself with the recent call to build new tools that can

support operational decision making in health services during the pandemic [5]. Indeed a

strength of our toolkit is its practical utility in supporting the continuous safe treatment of a

vulnerable group during a national or regional outbreak of COVID infection.

We argue that more work like ours is needed to support health services and that the data

science community must now focus on research translation. While the world’s population

awaits the results of vaccine trials, the risk of a secondary wave of infections remains a reality.

To protect the public and support health services under these circumstances we urgently need

more research and development of novel practical decision support tools. These tools must be

findable, accessible and verified. Our approach has been to make our modelling tools freely

available, verifiable and open online. We encourage others to do the same.

Fig 6. Two-way ambulance transport time distributions (1000 model runs). Results compare population COVID-positive and ambulance seating capacity (e.g.

2 = 2 seats.) Figures do not include ambulance clean-down/turnaround time.

https://doi.org/10.1371/journal.pone.0237628.g006
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Limitations of the study

A general limitation to these types of models is the level of uncertainty about the spread of

COVID. We have therefore sought to model worst-case scenarios to enable contingency

planning.

Dialysis network model.

• The model assumes that patients can be re-allocated to units/sessions immediately. In prac-

tice changes to session allocation (e.g. shifting from COVID-negative to COVID-positive are

likely to be made a little in advance.

• The results reported here assume that current capacity is maintained throughout the

COVID outbreak. We have not modelled the effect of reductions in capacity that may be

caused by staff shortages.

• We have not modelled timing of sessions, but the model progressively allocates COVID-pos-

itive sessions as needed, and we would assume that these sessions would come later in the

day, enabling cleaning at the end of the day, ready for any COVID-negative session the next

morning.

• We have not included home dialysis patients, which may affect inpatient demand. A likely

worst-case scenario (with home dialysis patients following the transmission spread, and

need for inpatient care, of the dialysis units, is that inpatient demand may be increased 15%.

Transport model.

• The results provide estimates of patient transport ambulances total travel time. They are not

intended to provide recommendations of the minimum number of ambulances needed to

maximise the number of appointments and/or shifts that run on time. A more accurate, but

highly complex and time consuming, formulation of this problem is called the (static) dial-

a-ride problem [21]. Dial-a-ride formulations explicitly take account of time windows for

patient pickup and drop-off and maximum patient ride-time. Further dynamic complexity

would be required in order to incorporate two-way patient journeys.

• The route optimisation uses two well known heuristics. A heuristic algorithm offers a fast

method to obtain a good solution, but it does not guarantee an optimal solution i.e the short-

est possible travel time achieved by optimal assignment of patients to routes. It is possible to

solve the CRVP with 100 nodes to ‘optimality’ using industrial solvers such Gurobi. We

chose a heuristic approach primarily for solution speed as we made no assumptions about

the size of problem other networks could face internationally. We note that a possible

improvement to the approach could be to switch to the Parallel version of Clarke-Wright

savings.

• Figures for inward and outwards journeys do not explore the potential efficiencies of drop-

ping patients back at their homes (after dialysis) and picking up new patients up at the same

time.

Conclusion

The simulation tools we present in this article are free and open under an MIT permissive

license [14]. Our intention was not to move the state-of-the-art in simulation or vehicle rout-

ing forward, but instead to develop tools that would support dialysis services during any pan-

demic. The study we present applies these tools in the South of England where they were used

to stress test capacity planning plans. As the pandemic progresses internationally there are
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risks of regional outbreaks or secondary national spikes in cases. At the start of the pandemic,

there were limited operational modelling tools available to support decision makers. Our sim-

ulation toolkit is now available for use immediately by health planners. We have designed the

tools to scale to large international dialysis planning situations and exploit parallelism and fast

well known heuristics.
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